ERDC Navigation Research

Inland Navigation CoP Workshop September 19-20, 2007 Louisville, KY

Presenters: Jim Clausner, John Hite
Technical Programs Office, CHL

Navigation Research Programs

- Navigation Systems (NavSys)
- Dredging Operations and Environmental (DOER)
- Dredging Operational Technical Support (DOTS)
- Inland Electronic Navigation Charts (IENC)
- Monitoring Completed Navigation Projects (MCNP)
- Coastal Inlets Research Program (CIRP)
- Regional Sediment Management (RSM)

Navigation Systems "An Integrated Program"

- ERDC Labs
 - Cold Regions Research Engineering Lab
 - Construction Engineering Research Lab
 - Coastal and Hydraulics Lab
 - Geotechnical and Structures Lab
 - Information Technology Lab
 - Topographic Engineering Lab
- Institute for Water Resources
- Efforts integrated with other Research Programs
- Industry Input/Cooperation

Navigation Systems "Current R&D Program"

- Deep Draft Channels and Harbor Design
 - Vessel Effects, Deep Channel Design
- Coastal Structure Design
- Hydrodynamic Design of Inland Structures
- Inland Infrastructure
 - Inspection
 - Condition Assessment
 - Inventory Management System
 - Predicative Maintenance
 - Rehabilitation
 - -Safety
 - Vessel Impacts
 - Outdraft

Navigation Systems Focus Areas

- Deep Draft Navigation
- Inland Navigation
 - Hydrodynamics
 - Infrastructure

Deep Draft Work Units, Vessel Effects

Work Units

- Improved Ship Simulations
- Improved STS Vessel/Current Interaction
- High Fidelity Vessel Effects

Added Capabilities

- Improved tools for STS, Ship Squat, Vert. Motions
- Hydrodynamic influences of vessel on flow field realtime basis
- Model for vessel generated waves and other complex fluid flow

Risk Analysis of Coastal Structures

- PI: Jeffrey Melby, PhD
- Team: Steve Hughes, Prof. Kobayashi, Prof. Kriebel, IWR
- Capability
 - Have CEM, CEDAS, SMS, and generalized @Risk
 - Lacking applied risk analysis methods/tools, physicsbased design, modern computer models and examples
- Products:
 - Physics-based design methods, Damage models
 - Reliability methods/partial safety coefficients
 - Risk methods/programs
 - Case studies/examples, spreadsheet applications
 - Web Page for all Corps structures
- Benefits:
 - Improved design/analysis tools
 - Reduced costs for breakwater, jetty design/rehab
 - Better planning/scheduling

Inland Navigation Research Areas

Hydrodynamics

Infrastructure

Focus Area Leader: John Hite

Hydrodynamic Design of Inland Structures

Capability Being Developed

Model ice and debris at locks.

 Integration of structural and hydraulic modeling (Ice & debris, tows, guard walls, gates, barge impacts)

- Unique ability to model fluid/structure interactions.
- Placement of emergency lock bulkheads and dam gates. (hydraulic forces during placement).
- Placement of float-in lock components.

Vessel/Barge Impact

Capability Being Developed

 Engineering methodologies for the complete impact-induced deformation based interaction between the structure and it's foundation will be based on 1) energy balance procedure and 2) structural dynamics (time varying force applied to the structure)

Benefits:

- Cost savings by determining realistic values for impact loads for utilization in the design guidance for flexible impact walls
- Updated design guidance for impacts with rigid walls

Detection of Scour

- Capability Being Developed:
 - Underwater inspection of scour protection
- Benefits
 - Process to assess repair needs
 - Better prediction of maintenance/rehab costs
 - Reduced chance of failure

Underwater Imaging

Acoustical Camera Demonstration

Tracking Total Station for Position

Real Time Current Velocity System

- Capability Being Developed
 - Real Time Outdraft
 Measurement that is
 transmitted to Tows
 approaching a Corps
 Lock and Dam

- Benefits: Improved Safety on Inland Waterways
 - Real Time Data provided for the Mariner to make better decisions
 - Utilizing AIS Network
 - Ability to Direct Marine Traffic and Transmit Lock Schedules to a Que

Steel Cracks and Welding

Capability Being Developed

- Criteria for performing fitness for service assessments
- Analytical techniques for numerical fracture mechanics analysis

 Analytical models to assess the pre-stress requirements of miter gate diagonals

Benefits

- Consistent and systematic guidance for performing a fitness for service assessment
- Detailed fracture analysis
- Reassessment of miter gate diagonal design criteria

NonDestructive Condition Monitoring for Tensioned Steel Members

- Capability Being Developed
 - NonDestructive test technique for quantitatively measuring tension and corrosion of steel members

Benefits:

- Rapidly measures tension
- Works with only limited access to part
- Provides evaluation of fitness for service
- Improved infrastructure reliability
- Decreased maintenance costs

Inspection and Condition Assessment of Steel Hydraulic Structures

Capability being developed

- procedure for the inspection of gates using an acoustical camera
- Development of a satisfactory deployment system and methods to enhance the images for the acoustical camera

- Improved quality of inspections
- Reduced cost of inspections
- Reducing personnel risk
- Real time permanent record

Mosaiced acoustical images of sheet piles at Mel Price Dam, Mississippi River

Robotic Inspection of Corps Structures

- Capability Being Developed
 - Widespread use of Remotely Operated Vehicles (ROVs) to inspect Corps structures

Benefits

- Lower inspection costs
- Higher inspection rates
- Less unplanned outages
- Better asset management
- Improved public safety

Innovative Lock Repair Techniques

- Capability Being Developed
 - Repair of frost damaged concrete
 - Managing alkali-aggregate reaction

cycles of freezing & thawing

Benefits

- Tools for interim repair
- Tools for Asset Management

ASR

Condition Assessment and Monitoring of Concrete Structures

Capabilities Being Developed

 Enhanced ability to detect and quantify deterioration using new and improved tools to support inspection and assessment of mass concrete structures

Benefits:

- Increased ability to develop longterm plans for maintenance and repair to facilitate the effective use of available resources and help insure continued operation of the navigation system.

Asset Management Condition Monitoring for CW Infrastructure

Capability/Products:

- Condition monitoring baseline data for:
 - Structural components
 - Lock operating machinery
- Guidelines for Predictive Maintenance

Benefits:

- Real-time indication of electrical, mechanical and structural condition
- Reduces fracture critical component failure
- Reduces maintenance cost and personnel requirements
- Improves safety and reliability of lock gate, dam gate and pumping station operations

Real-Time Data Management for Structural Monitoring – A Demonstration Project

- Capability Being Developed
 - A robust, adaptable data management architecture and user interface that will allow the structural engineer instant access to real-time sensor data for condition assessment

- Benefits: Improved condition monitoring for
 - Miter gates
 - Tainter gates
 - Trunion anchors
 - Dams and Levees

Results of Outdraft

Lock Distance Measurement System

- Capability Being Developed
 - Every Vessel ReceivesReal Time Distance
 - Distance Can beTransmitted by AIS
 - Displayed on IENC'sProviding ±3ft Accuracy

Navigation Safety Initiatives The Way Ahead (cont'd)

- AIS demonstration projects:
 - Louisville, KY McAlpine Lock USCG/Corps
 - Galveston, TX Galveston Causeway Bridge USCG/NOAA/Corps – with nav industry purchasing and maintaining the equipment

Questions

 http://chl.erdc.usace.army.mil/CHL.a spx?p=s&a=Programs;4

